Senin, 29 Agustus 2016

Simpanan Baku

Simpangan baku atau juga yang sering kita kenal dengan nama deviasi standard (standard deviation) adalah ukuran persebaran data. Simpangan ini bisa diartikan jarak rata-rata penyimpangan antara nilai hasil pengukuran dengan nilai rata-rata . Ketika kita belajar statistika SMA kelas XI kita pasti jumpai yang namanya simpangan baku. Istilah simpangan
baku sendiri pertama kali dikeluarkan oleh Karl Pearson pada tahun 1984. Ia merupakan pendiri institute of  Statistika  University College London. Bagaimana mencari rumus simpangan baku? Berikut penjelasan yang rumus hitung buat
Rumus Simpangan Baku untuk Data Tunggal
Jika sobat mempunyai sekumpulan data kuatitatif tunggal (tidak berkelompok) yang dinyatakan oleh x1,x2,x3,….,xn maka dapat dicari simpangan bakunya dengan rumus
untuk data sample menggunakan rumus
rumus simpangan baku untuk data tunggal
untuk data populasi menggunkan rumus
untuk data populasi menggunkan rumus
contoh soal
Selama 10 kali ulangan semester ini sobat mendapat nilai 91, 79, 86, 80, 75, 100, 87, 93, 90,dan 88. Berapa simpangan baku dari nilai ulangan sobat?
Jawab
Soal di atas menanyakan simpangan baku dari data populasi jadi menggunakan rumus simpangan baku untuk populasi.
Kita cari dulu rata ratanya
rata-rata = (91+79+86+80+75+100+87+93+90+88)/10 = 869/10 = 85,9
contoh soal simpangan baku
Kita masukkan ke rumus
rumus simpangan baku untuk populasi
 = hasil pertanyaan simpangan baku
Jika dalam soal menyebutkan sample (bukan populasi) misalnya dari 500 penduduk diambil 150 sample untuk diukur berat badannya… dst, maka menggunakan rumus untuk sample (n-1)
Rumus Simpangan Baku Untuk Data Kelompok
Misal sobat punya data kelompok yang dinyatakan dengan x1,x2,x3,…,xn dan masing-masing mempunyai frekuensi fi,f2,f3,…,fn maka simpangan bakunya dapat dicari dengan rumusuntuk sample menggunakan rumus
simpangan baku data kelompok untuk sample
untuk populasi menggunakan rumus
simpangan baku data kelompok untuk populasi
Jika data kelompok tersebut terdiri dari kelas-kelas maka sobat harus mencari nilai tengah dari masing-masing kelas untuk kemudian dicari rata-ratanya dengan cara mecari rata-rata data berkelompok. Untuk lebih jelasnya mari simak contoh di bawah ini
Contoh Soal
Diketahui data tinggi badan 50 siswa samapta kelas c adalah sebagai berikut
tinggi badan siswa samapta
hitunglah berapa simpangan bakunya
1. Kita cari dulu rata-rata data kelompok tersebut
Tinggi Badan Frekuensi (fi) nilai tengah (xi) (fi)x(xi) 131 – 140 2 135,5 271 141 – 150 8 145,5 1164 151 – 160 13 155,5 2021,5 161 – 170 12 165,5 1986 171 – 180 9 175,5 1579,5 181 – 190 6 185,5 1113  ∑▒〖f_i x_i 〗 7022  Rata-rata = (∑▒〖f_i x_i 〗)/(∑▒f_ ) 140,44
2. Setelah ketemu rata-rata dari data kelompok tersebut kita bikin tabel untuk memasukkannya ke rumus simpangan baku
rumus simpangan baku data kelompok

Tidak ada komentar:

Posting Komentar