Senin, 15 Agustus 2016

Modus dan Kuartil

Modus
 
Modus adalah nilai yang sering muncul. Jika kita tertarik pada data frekuensi, jumlah dari suatu nilai dari kumpulan data, maka kita menggunakan modus. Modus sangat baik bila digunakan untuk data yang memiliki sekala kategorik yaitu nominal atau ordinal.

Sedangkan data ordinal adalah data kategorik yang bisa diurutkan, misalnya kita menanyakan kepada 100 orang tentang kebiasaan untuk mencuci kaki sebelum tidur, dengan pilihan jawaban: selalu (5), sering (4), kadang-kadang(3), jarang (2), tidak pernah (1). Apabila kita ingin melihat ukuran pemusatannya lebih baik menggunakan modus yaitu yaitu jawaban yang paling banyak dipilih, misalnya sering (2). Berarti sebagian besar orang dari 100 orang yang ditanyakan menjawab sering mencuci kaki sebelum tidur. Inilah cara menghitung modus:

 Data yang belum dikelompokkan
Modus dari data yang belum dikelompokkan adalah ukuran yang memiliki frekuensi tertinggi. Modus dilambangkan mo.
Data yang telah dikelompokkan
Rumus Modus dari data yang telah dikelompokkan dihitung dengan rumus:




Dengan : Mo = Modus
L = Tepi bawah kelas yang memiliki frekuensi tertinggi (kelas modus) i = Interval kelas
b1 = Frekuensi kelas modus dikurangi frekuensi kelas interval terdekat sebelumnya
b2 = frekuensi kelas modus dikurangi frekuensi kelas interval terdekat sesudahnya

Contoh:

Sumbangan dari warga Bogor pada hari Palang Merah Nasional tercatat sebagai berikut: Rp 9.000, Rp 10.000, Rp 5.000, Rp 9.000, Rp 9.000, Rp 7.000, Rp 8.000, Rp 6.000, Rp 10.000, Rp 11.000. Maka modusnya, yaitu nilai yang terjadi dengan frekuensi paling tinggi, adalah Rp 9.000.

Dari dua belas pelajar sekolah lanjutan tingkat atas yang diambil secara acak dicatat berapa kali mereka menonton film selama sebulan lalu. Data yang diperoleh adalah 2, 0, 3, 1, 2, 4, 2, 5, 4, 0, 1 dan 4. Dalam kasus ini terdapat dua modu, yaitu 2 dan 4, karena 2 dan 4 terdapat dengan frekuensi tertinggi. Distribusi demikian dikatakan bimodus.
  
Kuartil
 
     Kuartil adalah titik yang membagi data yang telah diurutkan menjadi 4 bagian dan masing-masing 25%.
Kuartil ada 3 macam :
a. Kuartil bawah (K1) = 25% dari titik bawah
b. Kuartil tengah (K2) = 50% dari titik bawah
c. Kuartil atas (K3)     = 75% dari titik bawah

a. Kuartil Data Tunggal
k-tnggal.png
Keterangan :
Ki = kuartil ke-i
i   = ke-i (1, 2, 3)
n  = banyak data

a. Kuartil Data Berkelompok
k-berkelompok.png
Keterangan :
Ki = kuartil ke-i
Li = batas bawah kelas kuartil ke-i
Fi = jumlah frekuensi sebelum kelas kuartil ke-i
C  = panjang kelas
n  = jumlah seluruh data
fi  = frekuensi kelas kuartil ke-i
i   = ke-i (1, 2, 3)

Tidak ada komentar:

Posting Komentar